

Rutledge Group Meeting December 5, 2022

Application of the Sliplink model in polymer extrusion-based 3D printing

Visiting Student: Daniel Silva

Visit Supervisors: Profesor Gregory C. Rutledge, Ph.D. Marat Andreev

CDRSP CENTRE FOR RAPID AND SUSTAINABLE PRODUCT DEVELOPMENT

Outline

- Personal Background
- Research Center Presentation
- 3D Printing
- Opportunity
- Previous Studies
- Motivation
- Project Idea
- Using the Sliplink Model
- Results and Discussion
- Conclusions and Future Work

Application of the Sliplink model in polymer extrusion-based 3D printing

Outline

- Personal Background
- Research Center presentation
- 3D Printing
- Opportunity
- Previous Studies
- Motivation
- Project Idea
- Using the Sliplink Model
- Results and Discussion
- Conclusions and Future Work

Application of the Sliplink model in polymer extrusion-based 3D printing

Background

• Mechanical Engineering

• Manufacturing Work Experience

• Research in Design and Manufacturing

CDRSP CENTRE FOR RAPID AND SUSTAINABLE PRODUCT DEVELOPMENT

Massachusetts Institute of Technology

Application of the Sliplink model in polymer extrusion-based 3D printing

Background

• Doctoral Program in Materials Science

• Exploratory Project in 3D Printing

MIT Portugal

Application of the Sliplink model in polymer extrusion-based 3D printing

CDRSP - What we do?

- Academic Research and Training
- Joint projects with companies

Within one of the largest **mould making** clusters

Application of the Sliplink model in polymer extrusion-based 3D printing

CDRSP - What we do?

- Academic Research and Training
- Joint projects with companies

Within one of the largest
 mould making clusters

Key Topics:

- ✓ Emerging Technologies in Manufacturing
 - o Additive Manufacturing
- ✓ Materials \rightarrow Biopolymers, Smart Materials, Metamaterials
- ✓ Biomedical Applications
- ✓ Sustainability
- ✓ Circular Economy

Application of the Sliplink model in polymer extrusion-based 3D printing

Direct Digital Manufacturing (DDM)

Application of the Sliplink model in polymer extrusion-based 3D printing

Direct Digital Manufacturing (DDM)

CDRSP is the lead institute in the **PAMI** - Portuguese Additive Manufacturing Initative project

Application of the Sliplink model in polymer extrusion-based 3D printing

Extrusion-based 3D Printing

Scott Crump, founder of Stratasys, invented Fused Deposition Modelling (FDM), or 3D printing in 1989.

Massachusetts Institute of Technology

Application of the Sliplink model in polymer extrusion-based 3D printing

Extrusion-based 3D Printing

Scott Crump, founder of Stratasys, invented Fused Deposition Modelling (FDM), or 3D printing in 1989.

Massachusetts Institute of Technology

Application of the Sliplink model in polymer extrusion-based 3D printing

Extrusion-based 3D Printing

Scott Crump, founder of Stratasys, invented Fused Deposition Modelling (FDM), or 3D printing in 1989.

Massachusetts Institute of Technology

Application of the Sliplink model in polymer extrusion-based 3D printing

Examples

Application of the Sliplink model in polymer extrusion-based 3D print

Examples

Application of the Sliplink model in polymer extrusion-based 3D printing

Examples

Application of the Sliplink model in polymer extrusion-based 3D printing

Examples

Application of the Sliplink model in polymer extrusion-based 3D printing

Fields of Application

Prosthetics/orthotics

Application of the Sliplink model in polymer extrusion-based 3D printing

Fields of Application

Massachusetts Institute of Technology

Application of the Sliplink model in polymer extrusion-based 3D printing

Fields of Application

Application of the Sliplink model in polymer extrusion-based 3D printing

Example – Jig

FDM fabrication with PLA

Massachusetts Institute of Technology

Application of the Sliplink model in polymer extrusion-based 3D printing

Example – Jig

Application of the Sliplink model in polymer extrusion-based 3D printing

<u>Example</u> – Big parts

Application of the Sliplink model in polymer extrusion-based 3D printing

Example – Big parts

Application of the Sliplink model in polymer extrusion-based 3D printing

More information

Reserch Center

https://cdrsp.ipleiria.pt/

The 3D printing revolution - Documentary

https://www.youtube.com/watch?v=k0poVtBhIsQ

Massachusetts Institute of Technology

Application of the Sliplink model in polymer extrusion-based 3D printing

Project Idea - Origin

"Any processing operation applied to a polymer may have both chemical and physical effects on the material." – Roger T. Fenner, Principles of Polymer Processing, The Macmillan Press, 1979, pp. 15 ISBN 0-8206-0285-X

Application of the Sliplink model in polymer extrusion-based 3D printing

Project Idea - Origin

"Any processing operation applied to a polymer may have both chemical and physical effects on the material." – Roger T. Fenner, Principles of Polymer Processing, The Macmillan Press, 1979, pp. 15 ISBN 0-8206-0285-X

Application of the Sliplink model in polymer extrusion-based 3D printing

Project Idea - Origin

"Any processing operation applied to a polymer may have both chemical and physical effects on the material." – Roger T. Fenner, Principles of Polymer Processing, The Macmillan Press, 1979, pp. 15 ISBN 0-8206-0285-X

Application of the Sliplink model in polymer extrusion-based 3D printing

- How to monitor the changes in the material?
- <u>How far</u> can we change the material behavior under a certain load?
- Can we <u>predict the behavior</u> of the material after production?

Application of the Sliplink model in polymer extrusion-based 3D printing

Changing the Paradigm-Controlling Polymer Morphology during 3D Printing Defines Properties

Daniel P. da Silva ¹, João Pinheiro ¹, Saba Abdulghani ¹, Christina Kamma Lorger ², Juan Carlos Martinez ², Eduardo Solano ², Artur Mateus ¹, Paula Pascoal-Faria ¹ and Geoffrey R. Mitchell ^{1,*}

- ¹ Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-080 Marinha Grande, Portugal; daniel.p.silva@ipleiria.pt (D.P.d.S.); joao.d.pinheiro@ipleiria.pt (J.P.); saba.abdulghani@nms.unl.pt (S.A.); artur.mateus@ipleiria.pt (A.M.); paula.faria@ipleiria.pt (P.P.F.)
- ² NCD-SWEET Beamline, Alba Synchrotron Light Source, Cerdanyola del Vallès, 08290 Barcelona, Spain; ekamma@ancto.cov.au.(C.K.L.): guilmar@cellc.cc.(L.C.M.): csclane@cellc.cc.(E.S.)

Application of the Sliplink model in polymer extrusion-based 3D printing

Daniel Silva

MDP

- Point measurements on the Z direction, observing the polymer scattering as it crystallizes;
- Static extrusion means that measurements along the Z axis relate to the evolution in time.

Massachusetts Institute of Technology

Application of the Sliplink model in polymer extrusion-based 3D printing

Massachusetts Institute of Technology

Application of the Sliplink model in polymer extrusion-based 3D printing

SAXS patterns obtained at different write speeds

Extended chains during crystallization...

Orientation Parameter < P_{2n} >

$P_{2n} = 1 \rightarrow$ uniform orientation of crystals

Application of the Sliplink model in polymer extrusion-based 3D printing

Proof of Concept

Deposition velocity proportional to radial distance

Application of the Sliplink model in polymer extrusion-based 3D printing

Proof of Concept

Deposition velocity proportional to radial distance

Application of the Sliplink model in polymer extrusion-based 3D printing

Motivation

• Doctoral Program in Materials Science

Degradation during Recycling

Polyethylene as the world's most used polymer.

Source: Ruben Demets, et al.; Addressing the complex challenge of understanding and quantifying substitutability for recycled plastics.

Monomaterial Design and Printing

Same material, Different responses! Increasing reliability.

High Recyclability

Massachusetts Institute of Technology

Application of the Sliplink model in polymer extrusion-based 3D printing

Property Mapping

Motivation

Application of the Sliplink model in polymer extrusion-based 3D printing

- How to monitor the changes in the material?
- <u>How far</u> can we change the material behavior under a certain load?
- Can we predict the behavior of the material after production?

Multiscale Simulation

Massachuset Institute of Technology

Application of the Sliplink model in polymer extrusion-based 3D printing

- How to monitor the changes in the material?
- <u>How far</u> can we change the material behavior under a certain load?
- Can we predict the behavior of the material after production?

Application of the Sliplink model in polymer extrusion-based 3D printing

- How to monitor the changes in the material?
- <u>How far</u> can we change the material behavior under a certain load?
- Can we predict the behavior of the material after production?

Application of the Sliplink model in polymer extrusion-based 3D printing

Originally:

- Modelling polymer flow and crystallization.
- Analysis of the elastic modulus of a <u>partially cristalized poylmer melt</u>.

Adapted from: Roger T. Fenner, Principles of Polymer Processing, The Macmillan Press, 1979, ISBN 0-8206-0285-X

Application of the Sliplink model in polymer extrusion-based 3D printing

Application of the Sliplink model in polymer extrusion-based 3D printing

New plan:

• Simulation for printability assessment

Flowability	Buckling	Shape Stability	Die Swell	Interlayer Adhesion
-------------	----------	--------------------	-----------	------------------------

<u>New plan:</u>

• Simulation for printability assessment

Shear thining given by *n* in the Carreau Model:

$$\eta(\omega) = \eta_0 [1 + (\lambda \omega)^2]^{\frac{n-1}{2}}$$

Application of the Sliplink model in polymer extrusion-based 3D printing

Shear thining given by *n* in the Carreau Model:

Application of the Sliplink model in polymer extrusion-based 3D printing

• Obtainment of the Flow Curves

Application of the Sliplink model in polymer extrusion-based 3D printing

Input variables

• Material: <u>Polyisoprene (PI)</u>

 $M_w = 94.9 \ kg/mol$ $N_s = 46$ $\tau_s @25^\circ C = 0.1s$

- $T = 200^{\circ}C$
- γ̈́ = ?

Application of the Sliplink model in polymer extrusion-based 3D printing

Input variables

Shear rate for a circular capillary die:

$$\dot{\gamma}_w = \frac{4Q}{\pi r^3} \left(\frac{3f+1}{4f} \right)$$

 $\dot{\gamma}_{w} \equiv shear rate at the wall [s^{-1}]$ $f \equiv profile shape index \quad (f < 1)$ $Q \equiv volumetric flow rate [m^{3}/_{s}]$

$$Q = \pi R^2 v_p$$

Massachusetts Institute of Technology

Input variables

Shear rate for a circular capillary die:

$$\dot{\gamma}_w = \frac{4Q}{\pi r^3} \left(\frac{3f+1}{4f} \right)$$

 $\dot{\gamma}_{w} \equiv shear rate at the wall [s^{-1}]$ $f \equiv profile shape index \quad (f < 1)$ $Q \equiv volumetric flow rate [m^{3}/_{s}]$

$$Q = \pi R^2 v_p$$

Massachusetts Institute of Technology

Input variables

Shear rate for a circular capillary die:

$$\dot{\gamma}_w = rac{4Q}{\pi r^3} \left(rac{3f+1}{4f}
ight)$$

 $\dot{\gamma}_w \equiv$ shear rate at the wall $[s^{-1}]$ $f \equiv profile \ shape \ index \ (f < 1)$ $Q \equiv volumetric flow rate \left| \frac{m^3}{s} \right|$

$$Q = \pi R^2 v_p$$

MDPI

 $\dot{\gamma} = 150 \, s^{-1}$ For $\emptyset = 0.4mm$. materials $v_p = 1,5mm/s$ and f = 1Article Searching for Rheological Conditions for FFF 3D Assumption 2 Printing with PVC Based Flexible Compounds I. Calafel ^{1,*}^(D), R. H. Aguirresarobe ¹^(D), M. I. Peñas ¹, A. Santamaria ¹, M. Tierno ², J. I. Conde ² and B. Pascual² 1 POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, UPV/EHU, Avda. Tolosa 72, 20018 San Sebastian, Spain; roberto.hernandez@ehu.eus (R.H.A.);

lassachusette Institute of echnology

<u>Procedure</u>

echnology

- 1. Run the "shear_flow_exp"
 - Time-temperature Superposition

$$\tau_{s}@200^{\circ}C$$
$$\dot{\gamma}_{sl} = \tau_{s}.\dot{\gamma}$$

- 2. "Shear_flow_dummy" edition for each shear rate
- 3. Job preparation and run Cluster
- 4. "Stress_aver" script run Compilation of stress data of different output files
- 5. Data plotted in Excel

Flow curves

- 6 Simulations ran on cluster.
- Lowest shear rate \rightarrow Running time \sim 10 min \leftarrow 1000 chains | 50 chains per job

Application of the Sliplink model in polymer extrusion-based 3D printing

Mean value of steady state viscosity

Application of the Sliplink model in polymer extrusion-based 3D printing

Viscosity Curve

Massachusetts Institute of Technology

Power regression

Viscosity Curve - Polyisoprene

• Following the power-law:

$$\eta_{S} = K \cdot \dot{\gamma}_{sl}^{n-1}$$

The trendline slope is equal to the power *n-1*.

• From the regression:

$$n - 1 = -0.953 \Leftrightarrow n = 0.047$$

Application of the Sliplink model in polymer extrusion-based 3D printing

• Following the power-law:

$$\eta_{S} = K \cdot \dot{\gamma}_{Sl}^{n-1}$$

The trendline slope is equal to the power *n-1*.

• From the regression:

$$n - 1 = -0.953 \Leftrightarrow n = 0.047$$

Very high shear thining!

Application of the Sliplink model in polymer extrusion-based 3D printing

Observations

- Higher periods for lower shear rates should be tested;
- Value of *n* does not have a practical meaning Nonapplication in 3D Printing.

Other materials could be tested in near future developments.

Application of the Sliplink model in polymer extrusion-based 3D printing

Future Work

• Conformation tensor calculation – Near future.

Consideration of:

• Nozzle section variation and calculus of pressure difference as input parameter;

Assumption of immediate freezing of the conformation tensor and the modulus.

• Conformation tensor calculation with a partially crystallized melt.

Application of the Sliplink model in polymer extrusion-based 3D printing

Conclusions

- I had the opportunity to be introduced to Molecular Dynamics and to successfully apply the <u>Sliplink Model in 3D printing</u>;
- There are several opportunities to execute new studies;

Conclusions

- I had the opportunity to be introduced to Molecular Dynamics and to successfully apply the <u>Sliplink Model in 3D printing</u>;
- There are <u>several opportunities</u> to execute new studies;
- It was very challenging and... I have a lot more to study...

Application of the Sliplink model in polymer extrusion-based 3D printing

Thank you, Rutledge Group!

Application of the Sliplink model in polymer extrusion-based 3D printing