

Controlling morphological development during Additive Manufacturing: a route to mapping of properties

Daniel P. da Silva¹, João Pinheiro¹, Saba Abdulghani¹, Christina S. Kamma-Lorger², Eduardo Solano², Juan Carlos Martinez², Paula Pascoal-Faria^{1,} Artur Mateus¹, and Geoffrey R. Mitchell¹,*

¹ Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-080 Marinha Grande, Portugal ² NCD beamline, Alba Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain

SUMMARY

- Polymer morphology
- Morphology in extrusion
- 3D Printing FDM
- Experiment description
- Results
- Conclusion
- Future Work

INTRODUCTION

Polymer morphology - Semi-crystalline thermoplastics

- Spherulite are assemblies of chain folded lamella that grow radially from a point in space;
- Under flow, polymer chains may create linear nuclei parallel to flow direction;
- Shish kebab structures result from lamella growing perpendicular to a nucleating surface.

Morphology in extrusion

Morphology in extrusion

3d Printing – Fused Deposition Modelling

MATERIAIS 2022

Exploring a Better Future

6

THE EXPERIMENT

Concept

- In-situ extrusion;
- Observe crystallization as is happening;
- Control of parameters while processing;
- Time resolved SAXS/WAXS analysis.

ALBA Synchrotron light source

We make use of the ALBA Synchrotron Light Source in Barcelona which is a 3rd generation synchrotron light source

- It is essential for
- ✓ Time –resolving studies
- ✓ Small samples
- ✓ Spatial mapping
- ✓ Weak Scatterers

It generates intense beams of x-rays and other radiation, more than a million times as bright as a laboratory source

https://www.cells.es/en/beamlines/bl11-ncd

Developed equipment

- Positionning accuracy of \pm 100 μ m;
- Range up to 55 degrees on WAXS;
- Extrusion and collector velocity control;
- Vertical range of 50 mm.

Experimental Assembly

MATERIAIS 2022

Exploring a Better Future

Experimental Assembly

Experimental Assembly

Extrudate scanning

- Point measurements on the Z direction, observing the polymer scattering as it crystallizes;
- Static extrusion means that measurements along the Z axis relate to the evolution in time.

RESULTS

Filament analysis - SAXS

Lower collector velocity

Higher Collector Velocity

in-situ Analysis - SAXS

LDPE Extrusion Temperature = 170°C

in-situ Analysis - WAXS

LDPE Extrusion Temperature = 170°C

Processing and Morphology

P₂=1 – uniform orientation of crystals

CONCLUSIONS

- **Processing and structure relationships** in extruded filaments were successfully observed at the ALBA synchrotron light source;
- Higher write speeds lead to faster cooling **extended chains during crystallization**
- Production of 3d printed parts with targeted morphology possible based on parameters control.

Future Research

• Exploring the design of products to take advantage of this new approach.

THE TEAM

Daniel P. da Silva

João Pinheiro

Saba Abdulghani

Christina S. Kamma-Lorger

Eduardo Solano

Juan Carlos Martinez

Paula Pascoal Faria

Artur Mateus

Geoffrey R Mitchell

AKNOWLEDGMENTS

Fundação para a Ciência e Tecnologia (FCT) funding: UID/Multi/04044/2013 and UC4EP (Ref. PTDC/CTM-POL/7133/2014); MIT-EXPL/TDI0044/2021.

Co-funding FCT and European Union:

PAMI - ROTEIRO/0328/2013 (N° 022158), Add.Additive – add additive manufacturing to Portuguese industry POCI-01-0247-FEDER-024533.

NCD-Sweet Beamline at the ALBA synchrotron facility in Barcelona with the collaboration of ALBA staff:

CALIPSOplus (Grant 730872) funding.

SOCIEDADE PORTUGUESA DE MATERIAI

Thanks for your attention.

DANIEL PEDROSA DA SILVA daniel.p.silva@ipleiria.pt

